Study points to additional GMO public health risk; genes founds in blood supply.

dnafoodimageA new study published in the Plos One journal, co-authored by researchers from the University of Budapest,  and the Department of Physics and Astronomy of  Johns Hopkins University, specify that genes may pass from the to human blood.

This study is particularly disconcerting as genetically modified organisms which are not labelled in the U.S. market contain fragments of genetic material that is inserted into the organism to pass on a particular trait. The researchers point to unknown mechanisms through which complete genes and sequences of genes can avoid the usual degradation that occurs through the circulation system.

Professor Heinemann, an outspoken Australian Scientist has previously warned about the ability of double stranded RNA to enter the blood stream and organs via the .  A 2011 paper published in Cell specifically confirmed that plant double stranded RNA can “bind to the nucleotide sequence located in exon 4 of mammalian LDLRAP1, leading to the of LDLRAP1 expression in vivo.”

DNA and RNA are not a stagnant phenomena, and the prevailing available points to a considerable when experimenting with fragments of DNA and RNA inserted into GMOs that end up in our , with unknown health consequences. The human genome shares several peculiarities with the DNA of just about every other plant and animal.  The human genetic blueprint contains numerous entities known as transposons, or “jumping genes,” which have the ability to move from place to place on the chromosomes within a cell.

Approximately 50% of human DNA comprises both active transposon elements and the decaying remains of former transposons that were active thousands to millions of years ago before becoming damaged and immobile. Every time a plant, animal or human cell prepares to divide, the chromosome regions richest in transposon-derived sequences, even elements long deceased, are among the last to duplicate.

New led by Carnegie’s Allan Spradling detailed the spread of one particular jumping in the Drosophilia genome, called the P element, to illustrate their point; namely that these elements have the ability to move around and insert themselves into different spots in the genome.

P elements insert into DNA very selectively. Nearly 40% of new jumps occur within just 300 genes and always near the beginning of the . But the genes seemed to have nothing in common. When these sites were compared to data about the Drosophila genome, particularly recent studies of Drosophila genome duplication, the answer became clear. What many P insertion sites share in common is an ability to function as starting sites or “origins” for DNA duplication. This association between P elements and the machinery of genome duplication suggested that they can coordinate their movement with DNA replication. Spradling and his team propose that P elements — and likely other transposons as well — use a replication connection to spread more rapidly through genomes. These elements would only transpose after replicating, and then preferentially insert themselves into portions of DNA that have not yet become activated.

The consequences of horizontal transfer in association with genetically modified organisms cannot be underestimated despite the considerable denial of GM developers and FDA regulators.


Sándor Spisák, Norbert Solymosi, Péter Ittzés, András Bodor, Dániel Kondor, Gábor Vattay, Barbara K. Barták, Ferenc Sipos, Orsolya Galamb, Zsolt Tulassay, Zoltán Szállási, Simon Rasmussen, Thomas Sicheritz-Ponten, Søren Brunak, Béla Molnár, István Csabai. Complete Genes May Pass from Food to Human Blood. PLOS ONE. July 30, 2013

Heinemann, J. A., B. Kurenbach, and D. Quist. 2011. Molecular profiling — a tool for addressing emerging gaps in the comparative assessment of GMOs. Env. Int. 37:1285-1293.

Zhang, L., D. Hou, X. Chen, D. Li, L. Zhu, Y. Zhang, J. Li, Z. Bian, X. Liang, X. Cai, Y. Yin, C. H. Wang, T. Zhang, D. Zhu, D. Zhang, J. Xu, Q. Chen, Y. Ba, J.-J. Liu, Q. Wang, J. Chen, J. Wang, M. Wang, Q. Zhang, J. Zhang, K. Zen, and C.-Y. Zhang. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107-126.
Evaluation of risks from creation of novel RNA in genetically engineered wheat plants and recommendations for assessment An expert opinion of Professor Jack A. Heinemann, PhD, 28 August 2012 , for the Centre for Integrated in Biosafety

A. C. Spradling, H. J. Bellen, R. A. Hoskins. Drosophila P elements preferentially transpose to replication origins. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1112960108


Be Sociable, Share!


    Writers for the Food Exposed blog

    Leave a Reply

    Your email address will not be published. Required fields are marked *